Researchers have found multiple applications for the CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats) gene editing technology since it came into use by the scientific community. 蜜桃直播 (蜜桃直播) Assistant Professor and University of California, Berkeley Visiting Scientist is the first to combine the power of CRISPR鈥檚 nucleic acid targeting with the ultra sensitivity of graphene, making it possible to digitally detect DNA without amplification.
鈥淭he innovation is to bring the two together as a capture mechanism. Our system does not use amplification; instead, it relies on CRISPR鈥檚 genome-searching capability and graphene鈥檚 sensitivity,鈥 explains Aran, who led the multi-university research team responsible for the work described in the paper 鈥淐RISPR-Chip: A CRISPR-based Graphene-enhanced Field Effect Biosensor for Electronic Detection of Unamplified Target Genes,鈥 which was on March 25.
Aran鈥檚 novel system immobilizes the CRISPR complexes on the surface of graphene-based transistors. These complexes search a genome to find their target sequence and, if the search is successful, bind to its DNA. This binding changes the conductivity of the graphene material in the transistor, which detects the change using a handheld reader developed by Aran鈥檚 industry partner, San Diego-based .
鈥淲hat Kiana does is an application we hadn鈥檛 thought about before鈥攖hat no one thought about before. It shows the potential of a graphene biosensor that no one knew was even possible,鈥 says , Cardea鈥檚 chief technology officer and cofounder.
鈥淭o detect DNA without amplification is so shocking, so futuristic. This will skip several generations of technology development.鈥
Aran and her research colleagues demonstrated the system鈥檚 effectiveness by testing for the digital detection of DNA mutations in Duchenne Muscular Dystrophy, a genetic disorder that results in progressive muscle degeneration and shortened life expectancy.
鈥淲e have shown that our system is sufficient for genetic mutation testing. Now we need to enhance the system to detect infections,鈥 says Aran. 鈥淲e鈥檙e also evaluating CRISPR-Chip for detection of single-point mutations.鈥
Aran notes that the system, which enables users to run a test in less than an hour, has potential applications beyond diagnostics. She explains that these include multiplexing capabilities to run hundreds or thousands of tests at the same time. Another potential application is for quality control purposes within companies that use CRISPR for therapeutics; the system could enable them to better evaluate the efficiency of the CRISPR technology.
For Aran, turning to electronics to develop a system with unique capabilities came naturally: She earned an undergraduate degree in electrical engineering and went on to a PhD in biomedical engineering and postdoctoral work in bioengineering.
鈥淚 look at everything through the lens of electronics. It鈥檚 important to think about electronic biosensors because that is where I believe biological analysis is heading,鈥 says Aran, who is now exploring avenues to commercialize the system. 鈥淢y goal is to integrate fast-growing electronics technologies with modern biology not only to develop better diagnostic tools, but also to gain a better understanding of biological events using nanoscale electronics devices.鈥
Co-authors on the paper also include 蜜桃直播鈥檚 Reza Haijan, Sarah Balderston, Thanhtra Tran, Mandeep Sandhu and Mitre Athaiya, UC Berkeley鈥檚 Tara Deboer, Jessy Etienne, and Noreen Wauford, Cardea Bio鈥檚 Jolie Nokes and Brett Goldsmith, NanoSens Innovations鈥 Regis Peytavi, and the University of Navarra鈥檚 Jacobo Paredes.
This work was primarily supported by 蜜桃直播 Start-up funding to the Aran Lab, by the Rogers Family Foundation, and by an Open Philanthropy Research Gift.
For more coverage of Kiana Aran's innovative CRISPR-Chip:
width="1280" height="720" mp4="https://kgiedu.kinsta.cloud//wp-content/uploads/media/Videos/EMBARGOED-UNTIL-MARCH-25-CRISPR-Chip-Enables-Detection-of-DNA-without-Amplification.mp4"
Podcast featuring Kiana Aran and 蜜桃直播 Dean of Research Larry Grill (interview also available at ):